Chapter 3
Regular Expressions and Finite Automata
3.1. (a) 001 or 011  (b) 0101 or 1010 (c) 110  (d) 0110
32. (a)00 (b)0l (c)0 (d) The shortest one is 010.
33. (a)(r+s)* (b)r(r+s)* (¢)r* (d)r* (e) (r+s)*

3.4. First observe that the only difference between (111*)* and 111* is that the first allows
the string A. In other words, strings corresponding to (111*)* are A and all strings of two
or more 1’s. Therefore, the formula follows from the fact that any string of two or more 1’s
can be formed by concatenating copies of 11 and/or 111—i.e., that any integer n > 2 can
be expressed as 2: + 35 for some i, > 0. The proof of this fact is similar to the argument
in Exercise 2.50.

3.5. The string A corresponds to both expressions, and it is easy to see that any nonnull
string corresponding to the first one must start with a and end in b. Therefore, it is sufficient
to show that every string of the form x = ayb corresponds to the first regular expression.
Let us show this by induction on the number of a’s in z that are not immediately preceded
by a. If there is only one such a, then z does not contain the substring ba, and it must
therefore match the regular expression aa*bb*. Suppose k > 1, and every string of the form
ayb having k a’s not immediately preceded by a matches the first regular expression. Now
let £ = ayb, and suppose z contains k + 1 a’s that are not immediately preceded by a. The
first is the one at the beginning of z; consider the second such a, and let z; be the suffix
of r beginning with this a. Then the prefix of z preceding z; must be of the form aa*bb*.
The induction hypothesis tells us that z; matches the regular expression (aa*bb*)*, and so
the entire string z must match it also.

3.6. 0* = {A}.

3.7. (a) The set of languages that are subsets of 3 U {A}. This can also be described as
the set of languages L over X for which every element of L is a string of length 0 or 1. If
|Z| = k, there are 2%*! such languages.

(b) The set of all languages over ¥ which either are empty or contain exactly one string.
There are infinitely many such languages.

(c) The set of all languages that are @ or {A} or of the form {a}*, where a € X. There are
exactly || + 2 such languages.

(d) The set of all finite languages over ¥, of which there are infinitely many.

(e) The (finite) set of all languages of the form

TIUD UL USgUSE, USE UL By
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where each ¥; is a subset of ¥ U {A}. (k and/or j may be 0; if both are 0, the language
is §.) For ¥ = {a, b}, this includes the languages 0, {A}, {a}, {b}, {a,b}, {a, A}, {b,A},
{a,b,A}, {a}*, {b}*, {a}* U {b}*, {a,b}*, {a}* U {b}, and {b}* U {a}.

3.8. (a) (001)*(11)* (b) (001)*0(001 + 11)*  (c) (001 + 11)*(0 + A)

3.9. (a) 1*01*01*

(b) The most obvious solutions are those of the form AOBOC, where each of A, B, C is
either 1* or (0 + 1)*, and at least one of the three is (0 + 1)*.
(c)A+14+(0+1)0+(0+1)"11

(d) (00 +11)(0+ 1)* + (0 + 1)*(00 + 11)

(e) Two answers are (1 + 01)*(A + 0) and (A + 0)(1 + 10)*.

(f) 1*(01*01*)*

(g) The regular expression r = (1 + 01)* corresponds to the set of strings that don’t end
with 0 and don’t contain 00, and s = (1 + 10)* to the set of strings that don’t begin
with 0 and don’t contain 00. In a string with exactly one occurrence of 00, then the
strings before and after 00 correspond to r and s, respectively. Therefore, one answer is
(1401)*(0+A)+(1+01)*00(1+10)*. A more concise answer is (14+01)*(A+0400)(1+10)*.
(h) 1*(011%)*

(i) (0 + 1)*(11(0 + 1)*010 + 010(0 + 1)*11)(0 + 1)*

3.10. (a) All strings with an odd number of 1’s.

(b) All strings whose length is a multiple of 3, or 1 plus a multiple of 3.
(c) All strings not containing any substring of the form 00zx11.

(d) All strings containing both 10 and 01.

3.13. (b) We may define rrev recursively on the set of regular expressions as follows:
rrev(@) = 0; rrev(A) = A, fora € I, rrev(a) = a

and for arbitrary regular expressions r and s,

rrev((r+s)) = (rrev(r)+rrev(s)); rrev((rs)) = (rrev(s)rrev(r)); rrev((r*)) = ((rrev(r))*)

Now we can show by structural induction that for any regular expression r, if L(r) is the
corresponding language, rrev(r) is the regular expression corresponding to rev(L(r)). This
is clearly true for the regular expressions @, A, and a, for a € X. Suppose it is true for the
regular expressions r and s. We show it is true for (rs), and the argument is similar for
the other two cases. rrev((rs)) = (rrev(s)rrev(r)), by definition of rrev, and by Exercise
2.59a, rev(L(r)L(s)) =rev(L(s))rev(L(r)). According to the induction hypothesis, rrev(s)
corresponds to the language rev(L(s)), and similarly for r. Since the language corresponding
to the concatenation of two regular expressions is the concatenation of the two languages,
we have the desired result in this case.
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3.14. One expression is

(A+a+m)(dt +d*pdt +d¥pd*)(A + (E + e)(A+ a +m)dT)

3.15. (a) 2 (b) 3

3.16. (a) A + aaa* (b) A + acaa”

3.17. (a) The strings corresponding to each state are as follows. (It’s a little easier to start
from the end.)

(b)

V. All strings containing aaba.

IV. All strings ending in aab but not containing aaba.

III. All strings ending in aa but not containing aaba.

I1. All strings ending in a but not ending in aa and not containing aaba.
I. All strings not ending in a or aab and not containing aaba.

V. All strings ending with aaba.

IV. All strings ending with aab.

III. All strings ending with aa.

II. All strings ending with a but not with either aa or aaba.
I. All strings ending with neither a nor aab.

V. All strings beginning with aaba.

IV. Only the string aab.

ITI. Only the string aa.

IT. Only the string a.

I. Only the string A.

VI. All strings that don’t begin with aaba, except for the strings A, a, aa, and aab.

I. A only.

I1. All strings that start and end with a.

ITI. All strings that start with o and end with b.
IV. All strings that start with b.

L. (ab+ ba)*

IL. (ab+ ba)*a

1L (ab + ba)*b

IV. (ab + ba)*(aa + bb)(a + b)*
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3.18. If |z| = n, there is an FA with |z| + 2 states accepting {«}. It has one state for each
of the n + 1 prefixes of x, and one state N representing all the strings that are nonprefixes.
For each state representing a prefix of = other than z itself, there is one transition to the
next longer prefix and one to Nj from the states z and N, both transitions go to N.

3.19 (a)

(b)

(c)
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3.19 (e)

(b)
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3.21. The numbered states correspond to remainders mod 3. Appending 0 or 1 to the
string representing n yields 2n or 2n + 1, respectively. The unnumbered accepting state
represents the integer 0.




3.22. (a) We use structural induction on y. The basis step is to show that for any z and
any ¢, 6*(¢,zA) = 6*(6*(q,z),A). This is true because zA = z and §*(p, A) = p for any
p (in particular, for p = §*(q,z)). Suppose y has the property that for any z and any g,
8*(q, zy) = 6*(6*(q,z),y). Now consider ya, for any a € ¥.

§*(g, z(ya)) = 6*(q, (zy)a) = 6(6*(q,zy),a) = 6(6"(6"(q,2),y),a) = 6*(6"(q, z), ya)

The second equality uses the definition of §*; the next one uses the induction hypothesis;
and the last one uses the definition of §*(p, ya), where p = 6*(q, z).

(b) We use structural induction on z. In the basis step, 6*(g, A) = ¢ by definition of 6*.
In the induction step, suppose §*(¢,z) = q, and let a € . Then §*(g, za) = 6(6*(¢q,x),a) =
8(q,a) = q.

(¢) In the induction step, we comsider §*(g,z**') = §*(q, z*z) = 6*(6*(q,2%),z) =
6*(¢,z) = q. The second equality uses the formula in part (a), and the next equality uses
the induction hypothesis.

3.23. For any FA, a trivial way to get another FA with one more state accepting the same
language is to add a state, allow no transitions to that state, and make all the transitions
from that state go to one of the states in the original FA.

3.24. The language L = {A,0} C {0, 1}* has this property, as does any language for which
there are two strings in the language that are distinguishable with respect to the language.
(A special case is that in which some strings in L are prefixes of other strings in L and
some strings in L are not; however, more than one accepting state may be required even if
this condition does not hold.)

3.25. The language accepted by the FA is the set L of strings that don’t contain the
substring 00 and don’t end in 01. The simplest strings corresponding to the four states are
A, 0, 01, and 00. It is possible to show that any two of these strings are distinguishable
with respect to L. For example, A and 0 are distinguished by the string 0; A and 01 are
distinguished by the string A, as are 0 and 01, and 0 and 00, and A and 00; and 00 and 01
are distinguished by the string 0.

3.26. n + 1 states are required. There are n + 1 prefixes of z, whose lengths vary from
0 to n, and any two of these can be distinguished with respect to L = {0,1}*{z}. (If
T1y1 = xays = z and |z < |zg|, then z1y2 ¢ L and zoy; € L.) No more states are
necessary, because for any string z, if z = z;y and y is a prefix of z and z does not end
with any longer prefix of z, then z is indistinguishable from y with respect to L. (Note:
every ¢ ends with a prefix of z, if only the prefix A.)

3.27. No. A simple example is provided by the language L of all even-length strings of 0’s

and the sequence zg, z1, ..., where z; = 0’. For any n, =, and z,, are distinguished with
respect to L by the string A. (One of the two is in L and the other is not.)
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3.28. If L, is any nonempty language such that every z € L, has length n, then an FA
accepting L, must have at least [n|+ 2 states, because for any z € L,, a set of n + 2 strings
containing each of the n + 1 prefixes of z as well as a string y of length n + 1 is pairwise
distinguishable with respect to é‘n' (If z1y1 = z2y2 = z, and |zy| < |z4|, then z; and x4 are
distinguished by the string y;. Furthermore, any of the the prefixes is distinguishable from
y with respect to L,.) The language L = {0,1}* is one example. Any infinite language
that does not contain two strings of the same length is another.

3.29. If x € L(M), then for some accepting state g, §*(go,z) = g. For each prefix
of z, the state §*(qo, 1) is obviously reachable from g¢o, and therefore still present in M;.
Therefore, §(qo, z) is still q, and z € L(M,). If £ € L(M,), since all the transitions of M,
are present in M, z is also in L(M).

3.30. Suppose 6*(go0, z) = ¢ € R. By definition of R, there is a string y so that §*(q,y) € A.
Therefore, 6*(q0, zy) = 6*(6*(q0,z),y) € A, and z is a prefix of an element of L(M). On
the other hand, if z is a prefix of an element of L(M ), then §*(qo, zy) € A, for some string
y, so that 6*(go, z) € R. The conclusion is that M, accepts the language of all strings that
are prefixes of elements of L(M).

3.31. Every string is a prefix of an element of L(M). (See the preceding exercise.)

3.32. The proof is by structural induction on z. §*((p, q), A) = (p,q) = (67(p, A), 65(q, A)),
from the definitions of §*, 67, and ;. Suppose z is a string for which 6*((p,q),z) =
(65(p, ), 85(q,z)), and let a € . Then

6*((p,q),za) = 6(8"((p,9),2),0)
= 8((67(p, z), 65(q, %)), a)
= (6:1(61(p, 2), a), 82(85(q, ), a))
(61(p, za), 63(g, za))

The first inequality is true by definition of §*; the second is true by the induction hypothesis;
the third is true by the definitions of §; and the last is true by the definitions of 67 and 65.

3.33 (a) The picture below is also the one for parts (b) and (c), except that in (b) the only
accepting state is (C, Z) and in (c) the only accepting state is (C,Y). In both (a) and (c),
the picture can be simplified. '




3.34. On the one hand, any string matching r + s matches r*s*, and therefore any string
matching (r + s)* matches (r*s*)*. On the other hand, if z is a string matching r*s*, then
T = T,x9, where z; matches r* and z, matches s*. Then z; matches (r + s)* and so does
z9. Therefore, z = x1z9 also matches (r + s)*.

3.35. We first show that for any n > 0, if  corresponds to the regular expression (00*1)"1,
then = corresponds to the regular expression 1+ 0(0 + 10)*11. The proof for n = 0 is easy.
Suppose that k > 0 and any string corresponding to (00*1)*1 corresponds to 1+0(0+10)*11.
We must show that if z corresponds to (00*1)¥+!1, then z corresponds to 1+ 0(0 + 10)*11.
We know that z = 0071y, where y corresponds to (00*1)*1. By the induction hypothesis, y
corresponds to 1+ 0(0 + 10)*11. If y = 1 the result is clear. Otherwise y = 0z11, where 2
corresponds to (0 4+ 10)*. In this case z = 00710z11. Since 0710 corresponds to (0 + 10)*,
0710z does also, and this implies the result.

Now we show the opposite direction, that if x corresponds to 1 + 0(0 + 10)™11, then
z corresponds to (00*1)*1. Again the statement is clear when n = 0. Suppose k¥ > 0 and
any string corresponding to 1 4 0(0 + 10)*11 corresponds to (00*1)*1. Let = be a string
corresponding to 1 4+ 0(0 4+ 10)**'11. If 2 = 1 then z clearly corresponds to (00*1)*1.
Otherwise, z = 0z11, where z corresponds to (0 + 10)¥*!. This implies that for some 2’
corresponding to (0 + 10)¥, either £ = 002/11 or £ = 0102’11. By the induction hypothesis,
0z'11 corresponds to (00*1)*1, and therefore to (00*1)’1 for some j. If j = 1, then 2’ = 0*
for some i, and it is easy to see in this case that both 002’11 and 0102’11 correspond to
(00*1)*1, so that z is of the desired form. If j > 2 then 2’ = 012”009, where 2" corresponds
to (00*1)*; in this case 002’11 = 0P+212"09*'11, and 0102’11 = 010P*'12”07+'11, so that
again z has the right form.

3.36. (a) (A +0+00)(1+ 10+ 100)*

(b) Saying that a string doesn’t contain 110 means that if 11 appears, then 0 cannot appear
anywhere later. Therefore, a string not containing 110 consists of an initial portion not
containing 11, possibly followed by a string of 1’s. By including in the string of 1’s all the
trailing 1’s, we may require that the initial portion doesn’t end with 1. Since (0 + 10)*
corresponds to strings not containing 11 and not ending with 1, one answer is (0 + 10)*1*.
(c) (0 + 1)*(101(0 + 1)*010 + 010(0 + 1)*101 + 1010 + 0101)(0 + 1)*
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3.36 (d) (00 + 11 + (01 + 10)(00 + 11)*(01 + 10))*
(e) (01 + 10)e, where e is the expression in (g).

3.37. We say a regular expression r over ¥ has property P if, when each alphabet symbol
of r is replaced by another regular expression over ¥, the result is also a regular expression
over Y. We use structural induction to show that every regular expression over ¥ has
property P.

The basis step is to show that the regular expressions @, A, and a have property P, for

every a € ¥. This is clear, because the only one of these that is changed by substituting
regular expressions for elements of © is a, and in that case the result is a regular expression.
Induction hypothesis. The regular expressions r; and 7, over ¥ have property P.
Statement to be shown in induction step. The regular expressions (ry + r2), (r172),
and (r}) all have property P.
Proof. We take care of the first case, and the argument in the other two is similar. When
a regular expression is substituted for each element of ¥ in (ry + rg), the result is (s; + s2),
where each s; is obtained from the corresponding r; by substituting regular expressions for
alphabet symbols. By the induction hypothesis, each s; is a regular expression. It follows
by definition that (s; + s2) is also.

3.38. (b) Suppose r satisfies r = ¢+ rd and A does not correspond to d. Let z be a string
corresponding to r. To show that z corresponds to cd*, assume for the sake of contradiction
that z does not correspond to cd’ for any j. We can then show using mathematical induction
that for every n > 0, z corresponds to the regular expression rd".

The basis step n = 0 is clear, since z corresponds to 7. Suppose that k¥ > 0 and z
corresponds to rd*. rd* = (c + rd)d* = cd® + rd**1; since z does not correspond to cd¥, it
must correspond to rd**?,

Now it remains to derive a contradiction. Since A does not correspond to d, every string
corresponding to d has length at least 1. It follows that every string corresponding to d"
must have length at least n, and therefore that z must have length at least n for every n.
This is clearly impossible. We conclude that 2 must correspond to cd’ for some j.

3.39. Make a sequence of passes through the expression. In each pass, replace any regular
expression of the form (§+r) or (r+0) by r (where r is any regular expression), any regular
expression of the form (@r) or (r@) by @, and any occurrence of (§*) by A. Stop after any
pass in which no changes are made. If § remains in the expression, then the expression
must actually be @, in which case the corresponding language is empty.

3.40. Make a sequence of passes through the expression. In each pass, replace any regular
expression of the form (Ar) or (rA) by r (where r is any regular expression); replace any
occurrence of A* by A; replace any regular expression of the form (r + A)* by (r*) (where
r is any regular expression); and replace any regular expression of the form (A + r)s by
s+rs (where r and s are any regular expressions). Stop after any pass in which no changes
are made. If A remains in the expression, then the expression corresponds to the language

{A}.
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3.41. (a) It is clear that if L¥* = L* then L*¥ = L¥1. On the other hand, suppose
that L* = L**1. Let m be the length of the shortest element of L. Then the shortest
elements in L* and L**! have lengths km and (k + 1)m, respectively, which implies that
m must be 0. Therefore, A € L. It follows that L! C L*! for every 4, and therefore that
L* = UR,L! C UR,LE But in addition, L*** C L* for every i, so that U2, L' C L*. We
conclude that L*¥ = L¥*! if and only if L* = L*.

(b) The order is 3, because L? contains no string of length 6, and L3 contains strings of all
lengths > 4.

(¢) oo, because the language does not contain A.

(d) It is not hard to see that this language contains every string in which the number of a’s
is either a multiple of 3, or 1 plus a multiple of 3. It follows from this that the order is 2.

3.42. (a) The language {aba}* can be described as the union of {A} and the set of strings
that start with ab and end with ba and contain none of the substrings bb, bab, and aaa. So
one generalized regular expression describing this language is

A+ ab®’ N 0'ba N (B'0") N (B'bab®’) N (0'aaad’)

(b) {aa}* cannot be described this way. The intuitive reason is that without using *, there
is no way to generate all even-length strings without also including some odd-length strings.
A more rigorous proof follows.

Assume that the alphabet is {a}. (It’s not hard to see that if we can show the result for
this case, then it will still be impossible to describe {aa}* this way, even if larger alphabets
are allowed.) For a language L C {a}*, we let (L) = {n > 0 | n is even and o™ € L} and
e/(L) = {n > 0| nis even and a™ ¢ L}; similarly, o(L) = {n > 0 | n is odd and a™ € L}
and o/(L) = {n > 0| nis odd and a™ ¢ L}. Obviously, e(L) U €/(L) is the set of even
integers, and o(L) U o'(L) is the set of odd integers. We say L is finitary if either e(L) or
/(L) is finite and either o(L) or o’(L) is finite. The language {aa}* is nonfinitary, since
both e({aa}*) and €'({aa}*) are infinite.

The fact that {aa}* cannot be described by a generalized regular expression not involv-
ing * follows from a more general result: no nonfinitary language can be described this way.
This result follows from the fact that for languages Ly, Ly C {a}*, if L; and L are finitary,
then so are Ly U Lo, Ly N Lo, L1Lo, and L}. We will not verify all these statements, but we
check one representative case.

Suppose, for example, that e(L;) is finite, o(L;) is finite, e(L2) is finite, and o’(Ly) is
finite. (Assume also that both L; and Lo are nonempty.) Then e(L; U Ly) is finite, and
0o'(L1 U Ly) is finite. Both e(L; N L) and o(Lj N Ly) are finite. Both €'(L}) and o'(L})
are finite. Consider the number e(L;Ly). If L; has no strings of odd length, then the
strings in L Lo of even length are obtained by concatenating even-length strings in L; with
even-length strings in Lo, and therefore e(L;L9) is finite. If there is an odd-length string in
L1, however, then since L, contains strings of almost all odd lengths, Ly L, contains strings
of almost all even lengths—i.e., e/(L1Ls) is finite. Similarly, either o(L,Ly) is finite (which
will happen if L, has no strings of even length), or o'(L1Ly) is finite (which is true if L,
has a string of even length).
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3.44. (a) Not valid. There is no way to use the definition to determine what §*(q, a) is, for
a € X.

(b) This is a valid definition, since 6§*(q, A) is defined, and for each z with |z| > 1,
8*(q, z) is defined in terms of §*(p,y) for some state p and some string y of length |z| — 1.

Let the function being defined here be called §;. Then we must show that §,(q,z) =
8*(q, z) for every g and every z. In the basis step, we check that §,(¢q, A) = §*(q, A). This is
clear, since both are defined to be q. Suppose that for some y, §1(q,y) = §*(q,y) for every
state ¢. Then for a € ¥ and q € Q,

61(g, ay) = 61(8(q, a),y) = 6°(6(q,a),y) = 6°(6(6%(q, A), a),y) = 6°(6"(q, @), y) = 6"(q, ay)

The first equality is the definition of §;; the second uses the induction hypothesis, with the
state 6(g, a); the third and fourth use the definition of §*; and the last uses the formula in
Exercise 3.25(a).

(c) This definition certainly leaves something to be desired. If |zy| > 1, there are
strings w and z other than z and y for which zy = wz. If for some such z, y, w, and z,
6*(6*(¢,z),y) and 6*(6*(q,w), z) were different, then the definition would not be a valid
definition, because it would give different answers for §*(q, zy) and §*(q, wz) and these are
supposed to be the same. However, it is possible to show that this can’t happen, and so
the definition may be said to be valid.

3.45. Let z,y € {0,1}* with z # y. We consider three cases. If |z| = |y|, then zz € L
and yx ¢ L, so that z and y are distinguishable. Otherwise relabel the strings if necessary
so that |z| < |y| = |z| + k. If k is odd, then zz € L, and zy ¢ L because |zy| = 2|z| + k,
which is odd. Finally, if ¥ = 25 > 0, let w = wyws,, where w; and wy are any strings for
which |wy| = |we| = j and the first symbol of wq is different from the first symbol of y.
Then zwzw € L. However, ywzw = (yw;)(wozwiws), where the two parenthesized strings
are of equal lengths and start with different symbols, so that ywzw ¢ L.

3.46. (a) One answer is any two strings, neither of which is a prefix of an element of L:
1 and 10, for example. Another answer is any two distinct nonnull elements of L. In both
these answers, the two strings are indistinguishable because nothing can be appended to
either string (except A in the second case) so as to obtain an element of L. Another answer
is two strings like 001 and 00011. Here an element of L is obtained in both cases if 1 is
added to the end, and an element of L’ is obtained in both cases if anything else is added
to the end.
(b) Any two elements of {0" | n > 0} are distinguishable with respect to L.

3.47. In general, the 2" states correspond to the 2" possible strings of length n. We
can see how to draw the transitions by thinking of the state corresponding to string z as
representing the last n symbols of the input string: é(ajas...an,a) = ag...aza. A string
z of length k < n corresponds to the string 0" *z with leading 0’s. The initial state,
therefore, is the one corresponding to the string 0". The accepting states are the ones
corresponding to strings beginning with 1.
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3.48. For L to be nonempty, n must obviously be even. If n = 2m, there is an FA
with (m + 1) + 1 states accepting L. It has a state for each of the ordered pairs (i, 5),
where 0 < i < m and 0 < j < m, and 7 and j represent the numbers of 0’s and 1’s,
respectively, in the input string. - For such a pair (,7), each string with 7 0’s and j 1’s
is a prefix of an element of L. There is one additional state N corresponding to all the
nonprefixes of elements of L. The transitions are the natural ones: if z has ¢ 0’s and j 1’s,
and i < m, then 6((¢,7),0) = (i + 1, 5); similarly for 6((¢,7),0) if j < m. For each i < m,
8((m,1),0) = 6((i,m),1) = N.

This is the minimum possible number of states. It is straightforward to show that any
set of (m + 1)? 4 1 strings consisting of one for each state is pairwise distinguishable with
respect to L.

3.50. Here is a diagram of an FA accepting L in the case n = 2, which we call M.

We have simplified the picture by leaving out one of the states. There is a state gp,
which is not an accepting state, and 6(qp,0) = 6(¢p, 1) = qp. Every arrow in the picture
that ends in a square actually goes to ¢p.

It is straightforward to generalize this to arbitrary n, so as to obtain an FA M,. For
each string = of length < n, there is a state p, corresponding to z (that is, for which
{y | 6*(q0,¥) = p=} is {z}. In addition, for each z with |z} < n, there is another state, which
we call ¢,, corresponding to the set {y | yz € L}. The states p; and g, account collectively
for all the strings that are prefixes of elements of L, and all other strings are taken care of
by the single state gp. Since there are 2"*! — 1 strings of length < n and 2" — 1 strings of
length < n, the total number of states in the FA is (2"*! — 1) + (2" —1)+1=3%2" - 1.
Now we show that no FA with fewer states can accept L, by showing that two strings
corresponding to different states of M, are distinguishable with respect to L.

Clearly any string that is a prefix of an element of L is distinguishable from any string
that is not. Also, if z and y are both prefixes of elements of L and |z| # |y, then z and
y are distinguishable. It is therefore sufficient to show: (i) if |z1| = |z2] < n and z1 # =z,
then z, and z, are distinguishable; and (ii) if |y1| = |y2l, y1 # y2, z1y1 € L, and zoys € L,
then z, and z, are distinguishable. Statement (i) is easy:
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2,027 27127 € L and 2,02 2gT ¢ L

Statement (ii) is just as easy: ifz1y; € L and y; # y2, then since zay; € L, we must have
zoy; ¢ L. Therefore, y; distinguishes x; and z.

3.51. Suppose there an n and a set S of strings of length n so that for any z, z € L
if and only if x = z,z9 for some zo € S. Then {z € L | |z|] > n} = ¥*S, which is the
concatenation of regular languages and therefore regular. L is the union of this language
and a finite language, so that L is also regular.

3.52. A finite language L satisfies the property in a trivial way. We may choose n bigger
than the length of the longest string in L, and S to be the empty set. Then for any string
x with length n or greater, £ € L if and only if z ends with some element of S, because
neither condition is true for z.

3.53. Let L = {0z | z € {0,1}*}. Suppose n is any integer and S is any set of strings of
length n. If S = @, the equivalence cannot be correct, because L is nonempty. However, if
z is any element of S, the string 1z is not an element of L, even though it ends with an
element of S. Therefore, L does not have this property.

3.54. The FA is pictured here.

Let a;, b;, and c¢; be the number of strings = of length 7 for which §*(q, z) is qo, ¢1, and
g2, respectively. Then for each i, we may write these equations:

ait1 = 2a; + b; biy1=a;+ b

(The first equation, for example, follows from the fact that there are two arrows to state go
from state gg and one to state qg from state ¢;.) If we let n; denote the number of strings
of length ¢ that don’t contain the substring 01, then n; = a; + b;. We may write

Ni41 = Qi1 +biyn = 2a;+bi+a;+b;
= 3(ai+b;)—b; = 3n;— (ai—1+bi_1)
= 3n;—nig

It is easy to verify that the sequence m; = f(2i+2) satisfies the same recursive relationship:
mis1 = 3m;—m;_q for every ¢« > 1. Furthermore, ng = mg and n; = mj. Therefore, n; = m;
for every i > 0.

3.55. (a) The relation is reflexive, since for any FA M = (Q,X, q0, A4,6), the identity
function f : Q — Q defined by f(q) = g is an isomorphism from M to itself.
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Suppose that for 1 < k < 3, My = (Qk, &, gk, Ak, 0k), and i : Q1 — Q2 and j : Q2 —
Q3 are isomorphisms from M; to M, and from M, to M3, respectively. We construct
isomorphisms from M, to My and from M; to M3. It will follow that the relation is both
symmetric and transitive.

Since ¢ and j are bijections, i 71 : Q2 — Q; and joi: Q1 — Q3 are also bijections. For
any p € Q2 and a € %, i(i"1(82(p, a))) = 62(p, a), by definition of the function i~'. But
since i is an isomorphism from M; to My, we also have i(8:(i71(p), a)) = 62(i(i"1(p)), a) =
82(p,a). Since i is one-to-one, i~(65(p,a)) = 61(:7*(p),a). This is the formula ™" needs
to satisfy in order for it to be an isomorphism from M, to M;. In addition, since for any
g € Q1, ¢ is an accepting state if and only if i(q) is, it is also true that for any p € Q2, p is
an accepting state if and only if i~(p) is. Finally, since i(q1) = g2, i~*(g2) = q1. Therefore,
i~ is an isomorphism from M, to Mj.

Now we show that 7 o ¢ is an isomorphism from M; to Ms3.

joi(é1(g,a)) = j(i(61(g, a))) = 5(82(i(q), @) = 63(3 (i(q)), a) = 83(j © i(q), a)

The second equality holds because i is an isomorphism, the third because j is. It is easy
to check that for any ¢ € Q1, ¢ is an accepting state if and only if j o i(g) is, and clearly
joilq) = gs.

(b) The proof is by structural induction on . First, i(6](q,A)) = i(q) = 65(i(g), A).
Now suppose y is a string for which i(6](q,y)) = 6*(i(q), y) for every ¢q. Then for any a € %,

i(83(q,ya)) = i(61(87(a,y), a)) = 62(i(87(q, ¥)), a) = 62(85(i(q), ), @) = 85(i(q), ya)

The first equality holds by the definition of §7; the second holds because i is an isomorphism;
the third follows from the induction hypothesis; and the last uses the definition of é3.

(c) Suppose i : M; — Mp is an isomorphism. A string z is accepted by M; if and only
if 6%(q1,z) € A;. This is true if and only if i(6](q1,z)) € A2, and by (b), this is true if
and only if 63(i(q1), x)) = 83(g2,z) € As. Therefore, z is accepted by M, if and only if z is
accepted by M.

(d) Two. There is only one way to draw the transitions. Two nonisomorphic FAs are
obtained by making the state an accepting state and a nonaccepting state, respectively.

(e) Suppose the two states are go and g1, with go the initial state. In order to complete
the transition diagram, we must decide three things: how to draw the transitions from gqo,
how to draw the transitions from ¢;, and which states to designate as accepting states.
Since we require both states to be reachable from gg, there are three ways to draw the
transitions from gg. There are four ways to draw the transitions from q;; and since there
is to be at least one accepting state, there are three ways of designating accepting states.
The total number of transition diagrams is 3 x4 3 = 36, and it is easy to see that any two
of these represent nonisomorphic FAs.

(f) All the FA’s in which both states are accepting accept the language {0, 1}*. However,
any two of the remaining 24 accept different languages. This can be seen as follows. Let
M; and M, be the two FAs, with transition functions 6; and 6, respectively. If go is an
accepting state in one and not the other, then A is in one but not both of the two languages;
thus we assume that M; and My have exactly the same accepting states. If
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61(qo,0) # 62(qo,0), then 0 is in one of the languages but not the other, and similarly if
61(qo, 1) # 62(qo, 1). Finally, if the transitions from the accepting state are the same in M,
and Ms, and 8;1(q1,0) # 62(q1,0), then there is a string with second symbol 0 that is in one
but not both of the languages, and similarly if §1(q1,1) # 62(q1,1). The conclusion is that
the 36 nonisomorphic FAs in (e) accept 25 distinct languages.

48



